A PRECISE DESCRIPTION OF THE p-ADIC VALUATION OF THE NUMBER OF ALTERNATING SIGN MATRICES
نویسنده
چکیده
Following Sun and Moll [4], we study vp(T (N)), the p-adic valuation of the counting function of the alternating sign matrices. We find an exact analytic expression for it that exhibits the fluctuating behaviour, by means of Fourier coefficients. The method is the Mellin-Perron technique, which is familiar in the analysis of the sum-of-digits function and related quantities.
منابع مشابه
Arithmetic Properties of Plane Partitions
The 2-adic valuations of sequences counting the number of alternating sign matrices of size n and the number of totally symmetric plane partitions are shown to be related in a simple manner.
متن کامل$p$-adic Dual Shearlet Frames
We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...
متن کاملDeveloping a Paradigm for Fair Valuation in Tehran Stock Exchange
The concept of value is of great importance for investors. The goal of different groups of investors is always to maximize the value of their capital. The aim of this research is developing factors effective on securities in capital market in order to develop a paradigm for fair valuation that leads investors to make better decisions. To study fair value in a precise and comprehensive way, effe...
متن کاملPattern Avoidance in Alternating Sign Matrices
We generalize the definition of a pattern from permutations to alternating sign matrices. The number of alternating sign matrices avoiding 132 is proved to be counted by the large Schröder numbers, 1, 2, 6, 22, 90, 394 . . .. We give a bijection between 132-avoiding alternating sign matrices and Schröder-paths, which gives a refined enumeration. We also show that the 132, 123avoiding alternatin...
متن کاملMATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION
Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...
متن کامل